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for the action density is obtained in the long wavelength limit, in
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I. INTRODUCTION

The derivation of the kinetic equations describing the time evolution

of wave correlations due to resonant three-wave and resonant four-wave
interactions in a uniformly turbulent ensemble of weakly nonlinear,
dispersive systems, has previously been put on a rigorous and systematic
basis.l’2 The results are applicable to a broad class of problems in
which a fluid-like description may be used. ILet us denote by {wa{g)}
the set of possible eigenfrequencies as a function of wave vector k
describing the linear respomse in a given problem for which the analyses
in Refs. 1 and 2 may be applied. In situations where the resonant
three-wave decay conditions

ma(gl) + wB(}je) = w7(53) ’
(1.1)

Ntk = 23
cannot be satisfied for a triplet of modes (@, B, 7), then the principal
mechanism for the nonlinear transfer of energy between modes is resonant
four-wave coupling. This is manifest in the resulting kinetic equation2

through resonant behavior for w(k) and k satisfying

"

welly) +uglks) = w (k) + wgli)

(1.2)

"

Atk

SR
The fundamental process in relation to (1.2) is the merging of two

waves of frequencies wo}El) and w6(53), sey, into a virtual state
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w (k) + k), followed by the (instantaneous) decay of “’n(l‘l + k,) into
two oscillations w7(53) and ws{gu). This is shown schematically in
Fig. 1. An excellent case in point arises in the study of a random sea
of gravity waves in a channel of constant depth h.3’u In this example
the dispersion relation is of the form we(}s) = g|k| tanh |k|h, where

g = |g| 15 the acceleration due to gravity. The resonance condition
(;.l) cannot be satisfied for such a dispersion relation, wheress (1.2)
cen be satisfied. Consequently, in weakly turbulent situations, the
principal mechanism for the nonlinear transfer of energy in the
oscillation spectrum is that of resonant four-wave scattering. The
situation in a plasma is, of course, considerably more complicated
since there are many modes of oscillation possible in general. 1In
certain simple models, however, situations occur where the dispersive
properties do not permit a solution to (1.1). This is the case for

long wavelength electrostatic electron plasma oscillations with
2 2 2 2
w(k) = w (1 + 3kn;0) (1.3)

where the electron plasms frequency, Wy and the electron Debye length,
xD, are given by

b e2 6

2 0 2 e
XD =
bm e

n o

5 (1.4)

In Bq. (1.4), n_ is the uniform density of the background ions (assumed
fixed and singly ionized), and Ge is the electron temperature in units

of ergs; m, and -e are the mass and charge of the electron. Equastion




(1.3) is valid in the absence of external magnetic field for sufficiently

long wavelength disturbances, i.e., E?KDE

Although resonant three-wave interactions are forbidden, the four-wave

small compared to unity.

condition (1.2) may be satisfied since |w(k)| = W .

The nonlinear interaction of coherent electron plasme oscillations
has been extensively studied in a simple fluid approximation.5-9 In
this article we consider the time behavior of a uniformly turbulent
ensemble of such electron fluids, which evolve according to (2.1)-(2.4)
in the absence of magnetic fields. The mode) : lacks sufficient
sophistication to recover the effects of linear and nonlinear landau

damping which appears in a Vlasov analysis.lo’ll

However, it does serve
to illustrate the essential features of resonant four-wave coupling
which is a fundamental process in relation to the nonlinear interaction
of electron plasma oscillations. Moreover, it is a useful example to
demonstrate the techniques which may be used in reducing a particular
problem to & form in which the weak turbulence formalisms of Refs. 1 and
2 may be applied. We remind the reader that the effects of resonant
four-wave scatterings of electron plasma oscillations were first
estimated within a one-dimensional Vlasov framework.ll The analysis,
however, was incomplete in this regard. Upon close examination of the

problem, it is apparent that a fifth-order perturbation analysis of the

Vlasov equation (in powers of the electric field amplitude), instead of

third-order, would have heen necessary to properly include the tot

of resonant four-wave interactions which cause the wave energy to change

with time. The necessity of a fifth-order perturbation analysis in the
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oscillation amplitude has been shown to be the case in relation to the
shallow water wave problem,3 and is discussed in some generality
else'where.2

In Section II, the simple electron fluid model used in the present
analysis is discussed. There results a coupled system of nonlinear
equations (2.19) and (2.20) with bilinear nonlinearities describing the
time evolution of the density and velocity fluctuations in the spatially
uniform ensemble. Analogous to the techniques employed in time-dependent
perturbation theory in quantum mechanics, the problem is reformulated in
Section III in a representation where the basic vectors are solutions to
the linear versions of Egs. (2.19) and (2.20). The resulting nonlinear
equation for the fluctuation amplitudes is given by (3.10) and is of the
general form used in Ref. 2; consequently, the appropriate kinetic
equation (3.16) describing the time evolution of the spectral energy
density of the fluctuations mey be taken over directly from this latter
reference. Although the general solution to the kinetic equation is not
tractable, some simple observations are made in Section IV. It is shown
that the entire region of k-space (within the limits of applicability
of the model) is accessible to resonant four-wave scatterings of electron
plasma oscillations. In particular, if the wave vectors composing an
initial preparation are LEI < lgo[, say, then it is found that energy
may be transferred into the region of k-space for IE] > Igol’ i.e., to

shorter wavelengths.



II. MODEL OF EIECTRON FLUID

The model we use to describe the nonlinear interaction of electron
plasma oscillations is a very simple one. Namely, the positive ions
are assumed to form a fixed uniform background of density n,- Moreover,
the electrons are described by truncated moment equations. In the

electrostatic approximation, the electron fluid evolves according to

on O
— e e (nv) = 0 > (2.1)
ot Bg ~
o d e 19
SR S (2.2)
t 7 " m ~  nom O ~
~ e e ~
d
—— @ E = —)-FlTe(n -n ) N (2'3)
55 °
o
—xE=0 I (2°)+)
az ~e Ny

vhere n, Vv andlg are the electron density, mean velocity, and pressure
tensor (defined relative to the mean electron velocity), respectively.

The electric field g is self-consistent through Poisson's equation (2.3).
Tt should be kept in mind in relation to (2.2) that the forces associated
with the thermal stresses are smaller by O(kakr?) in comparison with the
electrostatic restoring forces, where k is the wave number typical of

the disturbance under consideration. To complete the system (2.1)-(2.4),
information must be specified regarding the electron pressure tensor P

This may be done by using the equation of evolution for the corresponding



moment of the Vlasov equation, and achieving closure by neglecting the
effects of heat flow.12 However, for present purposes, it is adequate
to use a model in which the electron pressure is scalar, and behaves
adiabatically with the density. In particular, we take P = (6 e/noe)n?’
in order to recover the linear dispersion relation (1.3) correct to

2 2
o(x Ap ).

Although this procedure is technically incorrect except in
one dimension, it has the obvious advantage of simplifying the problem
as well as recovering the correct long wavelength dispersion relation.
We will see at a later point that the nonlinear contribution of the
force associated with the above scalar pressure model may for all
intensive purposes be omitted from the analysis, although we shall make

no assumption a priori in this regard. The equation of motion for the

electron fluid is simply

bS] o} e 8 n O n
— T + v e ——X = - —-—§ - 3 —e;—_—"'—‘ - (2-5)
d T 7 dx m, mn Podxn

Equations (2.1) and (2.3)-(2.5) then form a closed set. It should be
noted in regard to (2.5) that if the velocity flow is initially

irrotationsl, i.e.,

Xv=0, (2.6)

o B

it remains so for all times. We assume that this is the case. This is
tantamount to omitting zero frequency shear waves from the analysis.

Iet us now consider the problem of uniform turbulence in a



statistical ensemble evolving according to the system (2.1) and (2.3)-
(2.6). Each fluid and field quantity is written as an average plus a

fluctuation, i.e.,

n=(n)+5n:
v={y) + 8y, (2.7)
E= (E) + BE .

In Bq. (2.7), (n), {v) and (E) are independent of position by the
assumption of spatial uniformity of the ensemble. Moreover, the
correlations between fluctuations are invariant under translation.
Averages may be viewed as averages over a probability distribution of
systems, or alternatively as the arithmetic mean of the quantity under
consideration taken over a large number of systems. Clearly the
average of the continuity equation (2.1) gives (3/3t){n) = O because of

spatial uniformity of the ensemble. That iIs to say
(n) =n_ , (2.8)

for all times if so initially. Moreover, as indicated in Appendix A,
it may be demonstrated within the context of the model that no average

flow velocity or average electric field is generated in the ensemble if

(v) = (B) =0, (2.9)

the fluctuations in the ensemble evolve according to




z_i_{ <;6'§~>}’ (2.10)

3 e 36 0 8n 0 36, on d on
. __5X=__5E___e_.__-{5v._5v+___-— , (2.11)
3t bl m Oxn ox m, ng ax n
~ e 0
" wvhere
9 ,
— * & = -lmetn , (2.12)
O
3
— X %% =0, (2.13)
ox
3
— X 8y =0 . (2.14)
ox

The only nonlinearities in Egs. (2.10) and (2.11) appear within curly
brackets and are bilinear in nature.
We now Fourier transform with respect to the variables X according

to the convention

(2.15)

..1%.25
8A(k,t) =fd5 e eA(x,t) ,

where 6A(5,t) may represent any of the fluctuations appearing in Egs.

(2.10)-(2.1%). Since the fluctuations are real-valued,
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8A(-k,t) = aax(k,t) . (2.16)

In addition, it is convenient to introduce the quantities SV('lg,t) and
6N(5,t) related to the Fourier transforms of the velocity and density

fluctuations, &v(k,t) and &n(k,t), by

ik
— ok, t) = By(k,t) , (2.17)
x|
loo(x)l &n(k,t)
aN(k,t) = , (2.18)
k] ng

where ma(g) is given by (1.3). Equation (2.17) follows since the velocity
field is irrotational; end the function ®N(k,t) in (2.18) is constructed
to have the same dimensions as SV(’lé,t). Moreover, the symmetries

8V(-k,t) = 8V*(k,t) and 8N(-kt) = 8N*(k,t) hold true. The Fourier

transforms of Eqs. (2.10) and (2.11) may then be readily reduced to

9 f dk ( Iw(g)llg'l}g-@g.—g')>

— 8N(k,t) = |u(k)BV(k,t) + 3
3t (2m)® N |l (e | % - k']

x N(x',t)8v(k - k',t) , (2.19)

and

)

= 0st) = -l [an(y ) +f %’ {( il (s - k) >

x 8V(k',t)oV(k - k',t) -

x SN(k',t)dN(k - 5’,1;)}. (2.20)
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Equations (2.19) and (2.20) are exact within the context of {2.10) and
(2.11), and the corresponding nonlinear terms are easily identified.

As previously discussed, in a conventionel weak turbulence analysis,
it would be necessary to obtain the perturbation solution to (2.19) and
(2.20) to fifth order in the fluctuation amplitude,’> followed by the
appropriate statistical averaging, in order to obtain the kinetic
equation describing the time evolution of the spectral energy density
in the fluctuations due to resonant four-wave processes. The principal
thesis in Refs. 1 and 2, however, is to eliminate the vast amount of
information and algebra associated with the aforementioned method by

studying at the outset the time behavior of correletions in the ensemble.

We now rewrite Eqs. (2.19) and (2.20) in canonical form similar to the

general dynamical equation previously studied.l’2

III. THE KINETIC EQUATION

Analogous to the techniques used in time-dependent perturbation
theory, it is convenient to formulate the problem in a representation
where the basis vectors are solutions of the linear versions of Eqs. (2.19)

and (2.20). Introducing the column vector, I(E,t), vhere

¥(k,t) :—:< ript) > , (3.1)
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)

=Xt =500 - wow) + [ e a0 - x, - k)

% §1[51’523I(51’t)’f(52’t)] . (3.2)

The 2 X 2 matrix gb and column vector El in (3.2) are given by

0] —ilw(k)]
(k) = ~ ) (3.3)
o <i|w(}5)| 0 )

Qi

and

2(2m)3(-1)8) [, ko3 ¥ (e o), ¥ iy 8] =

, 6l Ek o
L2 1 et
{(1,0) * ¥k ,t) | Y * ¥(k,,t)
\ 0 o) | ok
\ oG Tl i |
/ , 3% | 1, |k, |

+(0,1) * ¥(k,,t) | 2, JooCley ) ()| ) i’(k:g:t)}
\ o o]
fo o w} (3.4)

The eigenfrequencies associated with the linear (gl = 0) version of

Eq. (3.2) are solutions to w2 = w2(5) = w02(1 + Bk?xDE)-

We denote the
two possible modes by w, (k) and w_(g) (= -w,(k)) and use the sign conven-
tion

k) = ewm )

Q ~ i~ b4 g 7

R
0
+
1

~
(V)

throughout the remeinder of this article. The eigenvector of the linear
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version of Eq. (3.2) corresponding to mode ¢ is simply

/ l \
| = ‘ (3.6)
Ea(,ls) = 'f2. ma(g)
o (k) |

*
It should be noted in relation to (3.6) that ga(-g) = Ua('l\i') and that the

normelization is of the form
P -y =5, (3.7)

where QB(}E) is the Hermitian conjugate of LJB(}S) and ® o 1S the
Kronecker delta. Introducing the amplitude Aa(}é’t) associated with
the a'th mode, then, with

-iw (k)t
Lse) = I A 000 (x)e = (3.8)

Eq. (3.2) can be rewritten

Z i < -?—3‘—1 (5,1-,)) HO‘(}E)E-ima(ls)t=
o

[ a ot - gy - 0 Dy st ), )]
B,y -i(ws(}gl) +u (k)

x Ay (1,04 (K t)e > (3.9)

where the summetions in (3.8) and (3.9) are over +,- polarizations.

Maltiplying Eq. (3.9) by the Hermitian conjugate of ga(g), we have




1k

9 A By
— k = - - v e R
S okt Z[[ %y A 8k - Ky - Xp) Kgkky)
B,7 '
X AB(Sl’t)A7(§2’t) expﬁ(abgg) - wB(gl) - w7(52))t}, (3.10)
apy o
wkere the interaction kernel K(E,EJ:EQ) = -1y (k) - EI[E 1 Kos

Ua(gl))uy(nlse)]) i.e *>

2 2
ap . ‘
K(g,glfge) s w (k) { 1k, ks . o 5k .
(2") w2|}§; L,k] I I}Eel ma(g) wy(}SE)

2 2 2 2
ke 8 k k
. I51I~52+3_e = (3, 1% I

wB(}Sl) Te wa(g)wﬁ(gl)wy(EQ)

) (3.11)

which follows from Eq. (3.4). It should be noted that the term propor-
tional to ee in expression (3.11) arises from the nonlinear contribution
of the electron pressure in Eq. (2.11). In an order-of-magnitude
estimate, this is smaller by O(kzxr?) than the remaining terms in (3.11),
and may be omitted from the long wavelength analysis for all practical
PUrposes .

Equation (3.10) , advancing the amplitudes Aoﬂg,t) in time, is
exact within the context of the original model; the form, however, is
more amenable to0 a direct analysis than that of Egs. (2.19) and (2.20).
The general procedure outlined above can, of course, be applied in
situations where there are any finite number of coupled nonlinear
equations describing the problem under consideration. It should be

noted that in a small-emplitude theory of (3.10), Aoﬂg,t) does not



15

change with time in the lowest approximation, thus giving a ¥(k,t) in
which waves of different wavenumber propagate independently. 1In
higher order, however, the nonlinear terms act as perturbations causing
Aa(’lé,t) to change in the course of time through the interaction between
waves of differing wavenumber.

Since the time evolution of the fluctuations has been reduced to
the canonical form (3.10), the general results from previous analyses
may be used directly to give the kinetic behavior of the spectral energy
density associated with the fluctuations in the ensemble. The spectral

energy density associated with the a'th mode, 2Goa(51’t) , is given by2

(A ()8 (I, D) = 56 (K ,8)8(k + k) (3.12)

o~

for a spatially uniform ensemble. Moreover, we introduce the action

density, n o‘(51,’(:), associated with the «'th mode where

= Gk st) (k) (3.13)
ap7y.
and the response, p(l;,kl,ke), defined in terms of the interaction kernel
~T e v,
ap vy - af 7y

by ulls by s ko )= 0 (I Jo, ( 1, )K(B K K), dee.

2 .
gi 12 wa(,;g)wﬁ(gl)w 5 ke 1k %Ex, .
(em w2 lxl i il & w (k) w, (kp)
2 2 2
e k| ik k,
lE Ikkg 8, IEl"IE "k, L G
wg (k) me wok)wg (k) e, () 2

It should be noted that na(-g,t) =-na('§,t) = -né(}\g,t), and that the
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response, in addition to being real, enjoys the symmetries

ap 7 a B ‘
ik k) kp) = u-k, -k, kz) = u(- k ,-k,kg) = u(- k2 kl,-k) (3.15)

In addition, we remind the reader that 2G++ and G__ mey be expressed

directly in terms of the density and velocity correlations, (BN 8N, ),

1 %

QSV 5. ) and (SN 8V, ) although this is not necessary for present

K ok 1 %2
considerations.

As stated in the introduction, long wavelength electron plasma
osclllations cannot satisfy the resonant three-wave decay condition.
Hence, in the simple model used here, the leading-order process causing
na(g,t) to change with time is that of resonant four-wave interactions.
In light of Eq. (3.10) and the symmetries (3.15), we may use the kinetic
equation (4.15) of Ref. 2 to describe the evolution of noﬁg,t). In

particular, the kinetic equation for the action density is given to

O(n3) by

a—n(kl,t) fofdkgdk dkbrb(k +ky - k3-kh6(m(k

B,7,0

a B 7y B
Ip(-x ,-k2,~3,k4)l

ol Jag (o, (g g (X, )

* wg(lp) - w () - wylky))

x<nﬂ(§2,t)ny(53,t)n6(1~cu, t) +n (k) ,t)n (ks,0)n,(k, ,t)
- na(k ,t)n (k ,t)n (k3,t -n (kl,t (kg,t)n (k ,t)) (3.16)

where



17

D(- kl, ~2,k ) - < by >1/2 z{( 2/w (k) + k)

wolky) *aglky) - w (k) + k)

7y 0 8 @ n B 52""'53><k""k>}
X P(A1§3,§3 +5u:‘,1§u)ll(‘,l§l:‘,l§l'§2:§2) B e 7 B = B ’

(3.17)
The response D defined in (3.17) and appearing in the kinetic equation
(3.16) may be written explicitly in terms of its k-arguments and [maﬁg)}
through the definition of u in Eq. (3.14). It shéuld be noted that the
summation in (3.17) is over virtual states 7. Moreover,
D(- i ? 4 6 ’5h) is symmetric under interchange of any two of the
quantities (05-51), (B,-gz), (7,53) and (6,5h) when the resonance
condition (1.2) is satisfied. We also remind the reader that the stoss
term in the kinetic equetion (3.16) is trilinear in the action density,

in contrast to the kinetic equation for resonant three~wave processesl

where the driving term is bilinear in the action density.
IV. DISCUSSICN CF RESULIS

The kinetic equation (3.16) thus describes the time evolution of
the action density na(gl,t) associated with the a'th mode. The general
conservation relations and law of entropy increase discussed in Ref. 2
apply in relation to Eq. (3.16). Although the resulting kinetic equation
is a nonlinear integro-differential equation whose solution, in general,
is not tractable ay be made. It is of particular

interest to determine the region of k-space accessible to resonant

four-wave scatterings.
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We examine Eq. (3.]6) for a fixed '151 and carry out the }fh integration
over 8(k; + ky - k3 - k), which replaces k) by k, + k, - k3 in the
remainder of the integrand. For example, 5(“’(1(51) + wB(EE)'wy'(§3)'w8(1«§h))—)
5(050(51) + wB(}gg) - wy('1§3) - wa(}\gl + k- ﬂl«:_3)). We now imegine doing
the 1'53 and 52 integrations successively. For each '152 (keep in mind 1'51

is fixed), the resonant region in the %-integration is determined from

wa(gl) + wﬁ(gz) = w7(53) + “’6(51 +ky - 53) . (4.1)

Keeping in mind that }w(g)l = wo in the long wavelength circumstances
considered here, then, depending on the variocus polarizations, there are
three distinct ways in which the resonance condition (4%.1) can be

satisfied. Namely

it

Jolig )]+ o) | = Julsg) | + oy + k5 - k)] 5 (k.2a)

)] - lols)] = foGe) | - ol + s - k)|, (k.20)

or

!w(}v{l)l - Iw(52)| 'lw(53)l + !w(bl +,1§2 - 53)' . (u'zc)

For the purpose of illustration, it is sufficient to determine the

2
resonant ki-region in case (4.22). Wwith |w(k)| = wo(l + %}5 >‘D2) in
the long wavelength limit, it follows from (4.2a) that

2 2 2 2
kN otk =k +(}§1+,1§2-153) . (4.3)

Equation (4.3) may be rewritten
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<53.51*52>2=%(51-52)2 ]

2

That is to say, for each 52 the resonant }53-region is the surface of a

sphere of radius -;- lgl - ‘lgzl centered at (}51 + )52)/2 as depicted in

Fig. 2. In Eq. (3.16), the kj-integration over the surface of this sphere
may, in principle, be carried out leaving only the 5-integration. When |
integrating over 52 , the location as well as the radius of this
"resonant sphere" varies, covering the entire region of available phase
space. Of course, the model is limited in the range of wave numbers

to which it is applicable. In particular, 0 < |k| < l'lslmax’ where
lg‘maka < 1. For wavelengths shorter than 2n/ Iglmax’ collisionless
dissipation through landau damping becomes importeant.

Since the resonant region covers all of phase space (within the
1imits of the model), resonant four-wave scattering serves as a
mechanism for the transfer of energy into shorter wavelengths. Without
presenting any of the algebra here, one can show from Eq. (3.16) and
the preceding arguments that, if the wavenumbers composing an initial
preparation are |k| < |}50| say, then the region of k-space [k| > {50(
becomes populated for times greater than zero. This corresponds to a
transfer of energy to shorter wavelengths. In a more sophisticated
model, the ultimate fate of the wave energy would be dissipation through

Isndau d amping at sufficiently high wave numbers.
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APPENDIX A

Since the velocity field is irrotational according to Ea. (2.6),
the convective term y - (6/35)3 may be rewritten as (8/35)(X2/2).
Then the average of Eq. (2.5) over a spatially uniform ensemble just
gives

s} e

— () = — (B . (A.1)
ot

m
[

Moreover, combining the equations of continuity (2.1) and motion (2.5)

readily gives

) e
— (ny) = - — (uE) . (A.2)

ot m
e

If we supplement the model with the curl B Maxwell equation in the

absence of magnetic field, i.e.,

d
0 = -kmeny + — E , (A.3)
then
o
— (E) = lme(av) , (A.4)
at ~o ~

trivially. Combining (A.2) and (A.4), it follows that

3° brre”
— () = - (nE) . (A.5)
ot m,

However, the averagu (ng) may be rewritten from Poisson's equation (2.3) as
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1 9
(nE) =n (E) - — (E— " E) . (4.6)
e X

~

Using the identity E(3/dx) * E = (3/0x) « (EE) - (3/65)(§2/2) when

(3/3x) X E = 0, 1t is clear that the last average in (A.6) vanishes for

~

a spatially uniform ensemble. Consequently, Eq. (A.5) may be written as

52
vl w XE) =0 . (4.7)

Thus, the uniform ensemble supports average electric fields oscillating
exactly at the plasma frec;,uenCy.l,+ In the event that the average fields

and currents are absent initially, i.e.,
() = 0 = (ay) , (4.8)
they remain so for all times. Moreover, from (4.1)
(v) =0, (4.9)

for all times if Egs. (A.8) and (A.9) are satisfied initially.
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Figure 1l:

Figure 2:
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FIGURE CAPTIONS
Basic resonant four-wave process consisting of the merging of
two waves into an intermediate virtual state, followed by the
(instantaneous) decay of th:is virtual state into two further

states.

"Resonant splere" over which the k, integration in Eq. (3.16)

3

is to be carried out.
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